Efficient random sampling of binary and unary-binary trees via holonomic equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient random sampling of binary and unary-binary trees via holonomic equations

We present a new uniform random sampler for binary trees with n internal nodes consuming 2n + Θ(log(n)) random bits on average. This makes it quasi-optimal and out-performs the classical Remy algorithm. We also present a sampler for unary-binary trees with n nodes taking Θ(n) random bits on average. Both are the first linear-time algorithms to be optimal up to a constant.

متن کامل

Profile and Height of Random Binary Search Trees

The purpose of this article is to survey recent results on distributional properties of random binary search trees. In particular we consider the profile and the height.

متن کامل

Register Allocation for Unary-Binary Trees

We study the number of registers required for evaluating arithmetic expressions formed with any set of unary and binary operators. Our approach consists in a singularity analysis of intervening generating functions combined with a use of (complex) Mellin inversion. We illustrate it first by rederiving the known results about binary trees and then extend it to the fully general case of unaj-bina...

متن کامل

On Random Binary Trees

A widely used class of binary trees is studied in order to provide information useful in evaluating algorithms based on this storage structure. A closed form counting formula for the number of binary trees with n nodes and height k is developed and restated as a recursion more useful computationally . A generating function for the number of nodes given height is developed and used to find the a...

متن کامل

Generating Binary Trees at Random

Atkinson, M.D. and J.-R. Sack, Generating binary trees at random, Information Processing Letters 41 (1992) 21-23. We give a new constructive proof of the Chung-Feller theorem. Our proof provides a new and simple linear-time algorithm for generating random binary trees on n nodes; the algorithm uses integers no larger than 212.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Theoretical Computer Science

سال: 2017

ISSN: 0304-3975

DOI: 10.1016/j.tcs.2017.07.009